曲线在点的切线方程怎么求

 我来答
双霞殊5
2023-03-23 · 超过114用户采纳过TA的回答
知道小有建树答主
回答量:310
采纳率:100%
帮助的人:4.3万
展开全部

曲线在点的切线方程求解方法有:

以P为切点的切线方程:

y-f(a)=f'(a)(x-a),若过P另有曲线C的切线,切点为Q(b,f(b)),则切线为y-f(a)=f'(b)(x-a),也可y-f(b)=f'(b)(x-b),并且[f(b)-f(a)]/(b-a)=f'(b)。

如果某点在曲线上:

设曲线方程为y=f(x),曲线上某点为(a,f(a))求曲线方程求导,得到f'(x),将某点代入,得到f'(a),此即为过点(a,f(a))的切线斜率,由直线的点斜式方程,得到切线的方程。y-f(a)=f'(a)(x-a)。

切线方程分析法:

设圆上一点A为(x0,y0),则有:

(x0-a)^2+(y0-b)^2=r^2。对隐函数求导,则有:

2(x0-a)dx+2(y0-b)dy=0,dy/dx=(a-x0)/(y0-b)=k。(隐函数求导法亦可证明椭圆的切线方程,方法相同)或直接k1=(y0-b)(x0-a);K*k1=-1;(k1为与切线垂直的半径斜率)的k=(a-x0)/(y0-b)(以上处理是假设斜率存在,在后面讨论斜率不存在的情况)。

所以切线方程可写为:y=(a-x0)/(y0-b)x+B,将点(x0,y0),可求出B=(x0-a)x0/(y0-b)+y0。

东莞大凡
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于... 点击进入详情页
本回答由东莞大凡提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式