第二个问 求解 如下图
(2)
|b|=1, a.b =0, c=a-5b
a=(3,4)
b=(x,y)
|b|=1
x^2+y^2 =1 (1)
a.b=0
3x+4y = 0 (2)
sub (2) into (1)
x^2 + (9/16)x^2 =1
x^2 = 16/25
x= 4/5 or -4/5
x=4/5, y=-3/5
x=-4/5 , y=3/5
b = (4/5, -3/5) or (-4/5, 3/5)
case 1: b = (4/5, -3/5)
c=a-5b = (3,4) -(4, -3) = (-1, 7)
|c| = 5√2 , |a|=5
a.c= |a||c|cosθ
(3,4).(-1,7) = 25√2cosθ
25= 25√2cosθ
cosθ=1/√2
θ=π/4
case 2: b = (-4/5, 3/5)
c=a-5b = (3,4) -(-4, 3) = (7, 1)
|c| = 5√2 , |a|=5
a.c= |a||c|cosθ
(3,4).(7,1) = 25√2cosθ
25= 25√2cosθ
cosθ=1/√2
θ=π/4
ie
a,b 的夹角=θ=π/4