3个回答
展开全部
(38)
x^3+2
= x(1+x^2) -x
∫ (x^3+2)/(1+x^2) dx
=∫[ x -x/(1+x^2) ]dx
= (1/2)x^2 - (1/2) ∫[ 2x/(1+x^2) ]dx
= (1/2)x^2 - (1/2)ln|1+x^2| + C
(41)
let
x= (2/3)secu
dx =(2/3)secu. tanu du
∫ dx/√(9x^2-4)
=∫ (2/3)secu. tanu du / (2tanu)
=(1/3)∫ secu du
=(1/3)ln|secu + tanu | + C'
=(1/3)ln|(3/2)x + √(9x^2-4)/2 | + C'
=(1/3)ln|3x + √(9x^2-4) | - (1/3)ln2 + C'
=(1/3)ln|3x + √(9x^2-4) | +C
(42)
let
x= tanu
dx =(secu)^2 du
∫ dx/√(x^2+1)
=∫ secu du
=ln| secu + tanu | + C
=ln| √(x^2+1) + x | + C
x^3+2
= x(1+x^2) -x
∫ (x^3+2)/(1+x^2) dx
=∫[ x -x/(1+x^2) ]dx
= (1/2)x^2 - (1/2) ∫[ 2x/(1+x^2) ]dx
= (1/2)x^2 - (1/2)ln|1+x^2| + C
(41)
let
x= (2/3)secu
dx =(2/3)secu. tanu du
∫ dx/√(9x^2-4)
=∫ (2/3)secu. tanu du / (2tanu)
=(1/3)∫ secu du
=(1/3)ln|secu + tanu | + C'
=(1/3)ln|(3/2)x + √(9x^2-4)/2 | + C'
=(1/3)ln|3x + √(9x^2-4) | - (1/3)ln2 + C'
=(1/3)ln|3x + √(9x^2-4) | +C
(42)
let
x= tanu
dx =(secu)^2 du
∫ dx/√(x^2+1)
=∫ secu du
=ln| secu + tanu | + C
=ln| √(x^2+1) + x | + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询