球体面积公式的推导
2个回答
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
展开全部
用^表示平方
把一个半径为R的球的上半球切成n份
每份等高
并且把每份看成一个圆柱,其中半径等于其底面圆半径
则从下到上第k个圆柱的侧面积S(k)=2πr(k)*h
其中h=R/n
r(k)=根号[R^-(kh)^]
S(k)=根号[R^-(kR/n)^]*2πR/n
=2πR^*根号[1/n^-(k/n^)^]
则
S(1)+S(2)+……+S(n)
当
n
取极限(无穷大)的时候就是半球表面积2πR^
乘以2就是整个球的表面积
4πR^
您的问题已经被解答~~(>^ω^<)喵
如果采纳的话,我是很开心的哟(~
o
~)~zZ
把一个半径为R的球的上半球切成n份
每份等高
并且把每份看成一个圆柱,其中半径等于其底面圆半径
则从下到上第k个圆柱的侧面积S(k)=2πr(k)*h
其中h=R/n
r(k)=根号[R^-(kh)^]
S(k)=根号[R^-(kR/n)^]*2πR/n
=2πR^*根号[1/n^-(k/n^)^]
则
S(1)+S(2)+……+S(n)
当
n
取极限(无穷大)的时候就是半球表面积2πR^
乘以2就是整个球的表面积
4πR^
您的问题已经被解答~~(>^ω^<)喵
如果采纳的话,我是很开心的哟(~
o
~)~zZ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询