不存在n×n矩阵B,使得B²=A
1个回答
关注
展开全部
直接计算Trace(AB-BA)=Trace(AB)-Trace(BA)=0,但Trace(E)=n。所以不存在这样的矩阵。
至于杀鸡用牛刀的问题,我觉得,需要注意下面的一个事情。
假设V是一个线性空间,M是从V到V的线性映射。当V是有限维线性空间的时候,M可以写成矩阵的形式,仍然记成M,这时候有Trace(M)的定义。
如果V是无限维线性空间,一般不一定有Trace(M)的定义,而且确实有可能AB-BA=E。比如说V是(一元)多项式空间(也可以取成光滑函数空间或者解析函数空间),V里的元素都是一些函数,形如f(x)。这时候E作为恒等映射,把每个V中的元素映成自身,也就是Ef=f。现在取A把f映成f的导函数,即Af=f';取B把f(x)映成g(x)=xf(x),即Bf=xf。那么ABf-BAf=(xf)'-xf'=f=Ef,对任意f。也就是说AB-BA=E。
也就是说,对于无穷维的空间上
咨询记录 · 回答于2022-05-04
不存在n×n矩阵B,使得B²=A
直接计算Trace(AB-BA)=Trace(AB)-Trace(BA)=0,但Trace(E)=n。所以不存在这样的矩阵。 至于杀鸡用牛刀的问题,我觉得,需要注意下面的一个事情。假设V是一个线性空间,M是从V到V的线性映射。当V是有限维线性空间的时候,M可以写成矩阵的形式,仍然记成M,这时候有Trace(M)的定义。如果V是无限维线性空间,一般不一定有Trace(M)的定义,而且确实有可能AB-BA=E。比如说V是(一元)多项式空间(也可以取成光滑函数空间或者解析函数空间),V里的元素都是一些函数,形如f(x)。这时候E作为恒等映射,把每个V中的元素映成自身,也就是Ef=f。现在取A把f映成f的导函数,即Af=f';取B把f(x)映成g(x)=xf(x),即Bf=xf。那么ABf-BAf=(xf)'-xf'=f=Ef,对任意f。也就是说AB-BA=E。也就是说,对于无穷维的空间上
[比心]
原题是这样的
您可以再看一下吗?
好的,稍等一下喔
[AWSL]
I表示单位阵,X^{t}表示X的转置.因为BB^2=AA所以AABB=AAB^{t}.由于AAB^{t}是正交阵,(A+B)^{t}(A+B)=I,化简可得:B^{t}A+A^{t}B+I=0.令C=B^{t}A,则C也是正交阵,满足C+C^{t}+I=0,两边乘以C,C^2+C+I=0.正交阵是等距变换,所以特征值只能是正负1.但是正负1都不是方程x^2+x+1=0的解,所以矛盾.
[比心]
【问一问自定义消息】