求∫dt/2t(1+t^2)上1下4

 我来答
户如乐9318
2022-05-30 · TA获得超过6636个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:137万
展开全部
定积分的上、下限难以表示,下面用[t=1→4]来表示.
∫dt/2t(1+t^2) [t=1→4]
=∫[1/2t(1+t^2)]dt [t=1→4]
=∫[1/t[(t^2)/2+1/2] [t=1→4]
查积分表,有:
∫dx/[x(ax^2+b)=(1/2b)ln(x^2/|ax^2+b|)+C
对比题目,可知:x=t、a=1/2、b=1/2
所以:
∫[1/t[(t^2)/2+1/2] [t=1→4]
=ln[t^2/|(1/2)t^2+1/2|]+C [t=1→4]
=ln(16/|8+1/2|)-ln(1/|1/2+1/2|)
=ln(32/17)-ln1
=ln(32/17)
=5ln2-ln17
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式