连续奇数分数列项求和公式推导
1个回答
关注
展开全部
咨询记录 · 回答于2024-01-16
连续奇数分数列项求和公式推导
你好!
(1)1/n(n+1) = 1/n - 1/(n+1)
(2)1/(2n-1)(2n+1) = 1/2[1/(2n-1) - 1/(2n+1)]
(3)1/n(n+1)(n+2) = 1/2[1/n(n+1) - 1/(n+1)(n+2)]
(4)1/(√a + √b) = [1/(a-b)](√a - √b)
(5)n·n! = (n+1)! - n!
相关扩展:
an = 1/n(n+1) = 1/n - 1/(n+1) (裂项)
则 Sn = 1 - 1/2 + 1/2 - 1/3 + 1/4 … + 1/n - 1/(n+1)(裂项求和)
= 1 - 1/(n+1)
= n/(n+1)