数列极限的定义
展开全部
数列极限的定义:
数列有极限,即当n趋向无穷大时,数列的项Xn无限趋近于或等于a,
任意取一个值ε,是表明无论ε是多小的数,Xn与a的差总小于ε,就是Xn无限趋近于或等于a。
看n>N时,注意原话是:……对于任意小的ε,总存在正整数N,使得当n>N时,|Xn-a|<ε,……。这是表明,无论ε多小,当n足够大时,都可以满足|Xn-a|<ε。
就是即使ε小到非常小(趋近于0),当n大到足够大的程度(趋向于无穷大)也会满足Xn与a的差小于ε(趋近于0)。
扩展:
极限存在的条件:
单调有界定理 在实数系中,单调有界数列必有极限。
致密性定理 任何有界数列必有收敛的子列。
极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询