取模运算有什么用??
1、判别奇偶数
奇偶数的判别是模运算最基本的应用,也非常简单。
已知一个整数n对2取模,如果余数为0,则表示n为偶数,否则n为奇数。
2、判别素数
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。
取模主要是用于计算机术语中。取余则更多是数学概念。模运算在数论和程序设计中都有着广泛的应用,从奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从孙子问题到凯撒密码问题,无不充斥着模运算的身影。虽然很多数论教材上对模运算都有一定的介绍,但多数都是以纯理论为主,对于模运算在程序设计中的应用涉及不多。
扩展资料:
一、基本性质
1、若p|(a-b),则a≡b (% p)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)
2、(a % p)=(b % p)意味a≡b (% p)
3、对称性:a≡b (% p)等价于b≡a (% p)
4、传递性:若a≡b (% p)且b≡c (% p) ,则a≡c (% p)
二、与取余运算的区别
对于整型数a,b来说,取模运算或者求余运算的方法都是:
1、求整数商: c = a/b
2、计算模或者余数: r = a - c*b
求模运算和求余运算在第一步不同: 取余运算在取c的值时,向0 方向舍入(fix()函数);而取模运算在计算c的值时,向负无穷方向舍入(floor()函数)。
例如计算:-7 Mod 4
那么:a = -7;b = 4
第一步:求整数商c,如进行求模运算c = -2(向负无穷方向舍入),求余c = -1(向0方向舍入)。
第二步:计算模和余数的公式相同,但因c的值不同,求模时r = 1,求余时r = -3。
归纳:当a和b符号一致时,求模运算和求余运算所得的c的值一致,因此结果一致。
当符号不一致时,结果不一样。求模运算结果的符号和b一致,求余运算结果的符号和a一致。
另外各个环境下%运算符的含义不同,比如c/c++,java 为取余,而python则为取模。
参考资料来源:百度百科-取模运算
2024-06-06 广告