如何用matlab求解logistic模型 150
t=[0,30,45,76]p=[2200,4000,8260,10000]p=L/(1+(L/P0-1)e^(-rt))希望求解出L,p0,r并画出预测图形...
t=[0,30,45,76]
p=[2200,4000,8260,10000]
p=L/(1+(L/P0-1)e^(-rt))
希望求解出L,p0,r
并画出预测图形 展开
p=[2200,4000,8260,10000]
p=L/(1+(L/P0-1)e^(-rt))
希望求解出L,p0,r
并画出预测图形 展开
2个回答
展开全部
logistic模型属于非线性问题。所以求解其模型函数的系数可以用nlinfit()非线性回归分析函数来解决。由于给出的数据偏少,通过有效的插值方法,增加合理的数据点。主要代码:
a0=[-35.287,813.17,0.0098613];
t=0:5:75; %t=[0,30,45,76];
p=[2200 2259.2 2429.3 2699.5 3058.7 3495.8 4000 5228.9 7048.4 8260 8738.6 9152.7 9494 9754.1 9924.9 9997.9]; %p=[2200,4000,8260,10000];
fun=@(a,t)a(1)./(1+(a(1)/a(2)-1)*exp(-a(3).*t));
a= nlinfit(t,p,fun,a0);
运行结果
L=11278.4096;P0=1257.3315;r=0.061172
决定系数R²:0.93268
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
建立m函数文件存为logistic1
function f=logistic1(b)
t=[0,5,10,24,33,48,57,72,96,120,144,168,192,216];y=[0,0.028,0.103,0.336,0.450,0.597,0.716,0.778,0.835,0.849,0.816,0.839,0.811,0.816];
f = y-b(1)./(1+b(2).*exp(-b(3).*t));
b0=[10,2,2];
>> b=leastsq('logistic1',b0)
b =
0.8221 13.9173 0.0818
或者cftool
General model:
f(x) = b/(1+a*exp(-k*x))
Coefficients (with 95% confidence bounds):
a = 13.92 (6.301, 21.53)
b = 0.822 (0.7911, 0.853)
k = 0.08184 (0.06479, 0.0989)
Goodness of fit:
SSE: 0.01404
R-square: 0.9898
Adjusted R-square: 0.9879
RMSE: 0.03572
function f=logistic1(b)
t=[0,5,10,24,33,48,57,72,96,120,144,168,192,216];y=[0,0.028,0.103,0.336,0.450,0.597,0.716,0.778,0.835,0.849,0.816,0.839,0.811,0.816];
f = y-b(1)./(1+b(2).*exp(-b(3).*t));
b0=[10,2,2];
>> b=leastsq('logistic1',b0)
b =
0.8221 13.9173 0.0818
或者cftool
General model:
f(x) = b/(1+a*exp(-k*x))
Coefficients (with 95% confidence bounds):
a = 13.92 (6.301, 21.53)
b = 0.822 (0.7911, 0.853)
k = 0.08184 (0.06479, 0.0989)
Goodness of fit:
SSE: 0.01404
R-square: 0.9898
Adjusted R-square: 0.9879
RMSE: 0.03572
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |