请问数列1/n的求和
答案:
假设;s(n)=1+1/2+1/3+1/4+..1/n,
当 n很大时 sqrt(n+1),
= sqrt(n*(1+1/n)),
= sqrt(n)*sqrt(1+1/2n),
≈ sqrt(n)*(1+ 1/(2n)),
= sqrt(n)+ 1/(2*sqrt(n)),
设 s(n)=sqrt(n),
因为:1/(n+1)<1/(2*sqrt(n)),
所以:s(n+1)=s(n)+1/(n+1)< s(n)+1/(2*sqrt(n)),即求得s(n)的上限。
以下是数列求和的相关介绍:
数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。
数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
该公式又叫作分部求和公式,是离散型的分部积分法,最早由数学家阿贝尔提出。这个方法也适合解决等差等比数列相乘的数列求和,但比起上面的错位相减法,该方法方便快捷并且证明十分容易,考试中先写出证明过程再直接代公式即可。
以上资料参考百度百科——数列求和
求采纳,不满之处请追问。
等会等我证明一下,谢谢
这个数组是发散的,所以没有求和公式,只有一个近似的求解方法:
1+1/2+1/3+......+1/n ≈ lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)
当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)0.57721566490153286060651209叫做欧拉常数
1+1/2+1/3+…+1/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。
自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):
1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)
具体证明过程能给我看一下吗,谢谢
1+1/2+1/3+1/4...+1/n 这个是不可求和的
大学里能给出这式子不可求和的证明
这个数组是发散的,所以没有求和公式。
只有一个近似的求解方法:
1+1/2+1/3+……+1/n ≈ lnn+C
(C≈0.57722,一个无理数,称作欧拉初始,专为调和级数所用。)