怎么讨论函数f x=e∧2x-alnx 导数零点的个数?

 我来答
戒贪随缘
推荐于2019-08-21 · TA获得超过1.4万个赞
知道大有可为答主
回答量:3687
采纳率:92%
帮助的人:1378万
展开全部
原题是:设函数f( x)=e^(2x)-alnx .讨论f (x)的导数零点的个数.
f'(x)=2e^(2x)-(a/x)=(xe^(2x)-(a/2))(2/x) (x>0)
设g(x)=xe^(2x)-(a/2)
g(x)在(0,+∞)上的零点个数就是f'(x)的零点个数.
g'(x)=e^(2x)+2xe^(2x)=(2x+1)e^(2x)>0,x∈[0,+∞)
g(x)在[0,+∞)上单增
g(0)=-a/2,x→+∞时,g(x)→+∞
得当-a/2<0即a>0时,g(x)在(0,+∞)上有1个零点
当-a/2≥0即a≤0时,g(x)在(0,+∞)上无零点
所以当a≤0时,f'(x)在(0,+∞)上无零点
当a>0时,f'(x)在(0,+∞)上有1个零点.

希望能帮到你!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式