已知在乘积1*2*3*......*N的尾部有106个0,自然数N的最大值是多少?
展开全部
分析:若已知n的具体数值,求1×2×…×n的尾部零的个数,则比较容易解决,现在反过来知道尾部零的个数,求n的值,不大好处理,我们可以先估计n大约是多少,然后再仔细确定n的值。
因此,乘积1×2×3×…×400中含质因数5的个数为80+16+3=99(个)。又乘积中质因数2的个数多于5的个数,故n=400时,1×2×…×n的尾部有99个零,还需
7个零,注意到425中含有2个质因数5,所以:
当n=430时,1×2×…×n的尾部有106个零;
当n=435时,1×2×…×n的尾部有107个零。
因此,n的最大值为434。
因此,乘积1×2×3×…×400中含质因数5的个数为80+16+3=99(个)。又乘积中质因数2的个数多于5的个数,故n=400时,1×2×…×n的尾部有99个零,还需
7个零,注意到425中含有2个质因数5,所以:
当n=430时,1×2×…×n的尾部有106个零;
当n=435时,1×2×…×n的尾部有107个零。
因此,n的最大值为434。
2022-08-15
展开全部
分析:若已知n的具体数值,求1×2×…×n的尾部零的个数,则比较容易解决,现在反过来知道尾部零的个数,求n的值,不大好处理,我们可以先估计n大约是多少,然后再仔细确定n的值。
因此,乘积1×2×3×…×400中含质因数5的个数为80+16+3=99(个)。又乘积中质因数2的个数多于5的个数,故n=400时,1×2×…×n的尾部有99个零,还需
7个零,注意到425中含有2个质因数5,所以:
当n=430时,1×2×…×n的尾部有106个零;
当n=435时,1×2×…×n的尾部有107个零。
因此,n的最大值为434。
因此,乘积1×2×3×…×400中含质因数5的个数为80+16+3=99(个)。又乘积中质因数2的个数多于5的个数,故n=400时,1×2×…×n的尾部有99个零,还需
7个零,注意到425中含有2个质因数5,所以:
当n=430时,1×2×…×n的尾部有106个零;
当n=435时,1×2×…×n的尾部有107个零。
因此,n的最大值为434。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询