在三角形ABC中,若sinA=2sinBcosC,且sinB²+sinC²,试判断三角形ABC的形状?

 我来答
印元斐布缎
2020-02-12 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:1012万
展开全部
在△ABC中,若sinA=2sinBcosC,sin²A=sin²B+sin²C,试判断△ABC的形状.
答案:△ABC是等腰直角三角形
证明:由sin²A=sin²B+sin²C,利用正弦定理得a²=b²+c²,
故△ABC是直角三角形,且∠A=90°,
∴B+C=90°,B=90°-C,
∴sinB=cosC,
∴由sinA=2sinBcosC可得:1=2sin²B,
∴sin²B=1/2,sinB=2分之根号2,
∴B=45°.
∴△ABC是等腰直角三角形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式