1个回答
展开全部
画线前式为 dy/dx = f'(1+dy/dx) = f' + f'dy/dx,
(1-f')dy/dx = f', dy/dx = f'/(1-f'),
dy/dx = (f'-1+1)/(1-f') = -1 + 1/(1-f').
d^2y/dx^2 = d[-1+1/(1-f')]/dx = {d[-1+1/(1-f')]/df}(df/dx)
= [f''/(1-f')^2]f' = f' · f''/(1-f')^2 (此处书上疑似错误)
(1-f')dy/dx = f', dy/dx = f'/(1-f'),
dy/dx = (f'-1+1)/(1-f') = -1 + 1/(1-f').
d^2y/dx^2 = d[-1+1/(1-f')]/dx = {d[-1+1/(1-f')]/df}(df/dx)
= [f''/(1-f')^2]f' = f' · f''/(1-f')^2 (此处书上疑似错误)
更多追问追答
追问
你好,还有个问题,已经采纳您了
为什么这个题最后求二阶导 还得乘以一个1+y导
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询