判断一个式子是多项式还是单项式需要化简吗?
判断一个式子是单项式还是多项式,是不需要化简的。化简是一种数学计算了。在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。
函数及其根
给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1,...,an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。
若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。
例如 f=x^2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!
例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。
另外,若所有系数为实数多项式 P(x)有复数根Z,则Z的共轨复数也是根。
若P(x)有n个重叠的根,则 P‘(x) 有n-1个重叠根。即若 P(x)=(x-a)^nQ(x),则有 a 是 P’(x)的重叠根且有n-1个。