定积分换元法是什么?
1个回答
展开全部
定积分的换元法大致有两类:
第一类是凑微分,例如xdx=1/2dx²,积分变量仍然是x,只是把x²看着一个整体,积分限不变。
第二类,令x=x(t),自然有dx=dx(t)=x'(t)dt,这里引入新的变量,积分限要由x的变换范围换成t的变化范围。
分部积分中常见形式
(1)求含有e^x的函数的积分
∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx
(2)求含有三角函数的函数的积分
∫x*cosxdx=∫x*d(sinx)=x*sinx-∫sinxdx
(3)求含有arctanx的函数的积分
∫x*arctanxdx=1/2∫arctanxd(x^2)=1/2(x^2)*arctanx-1/2∫(x^2)d(arctanx)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询