怎样比对数和指数的大小关系?
展开全部
对数比大小:
1、在比较对数式的大小时,如果底数相同,直接利用对数函数的单调性比较即可;如果底数不相同,则常常引入两个中间量:0和1;
2、比较对数式底数的大小的方法:做直线y=1,直线与函数图像的交点的横坐标就是该函数的底数,然后比较横坐标的大小即可。
指数比大小(y=a^x):
1、a>1时,x越大,指数越大;0<a<1时,x越大,指数越小。
2、在底数或者指数有一个相同的情况下,可以画图进行比较,较为直观和清晰。
3、若指数和底数都不同,可以取对数计算比较。
扩展资料:
指数:a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
对数:
简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。
展开全部
对数比大小:
1、在比较对数式的大小时,如果底数相同,直接利用对数函数的单调性比较即可;如果底数不相同,则常常引入两个中间量:0和1;
2、比较对数式底数的大小的方法:做直线y=1,直线与函数图像的交点的横坐标就是该函数的底数,然后比较横坐标的大小即可。
指数比大小(y=a^x):
1、a>1时,x越大,指数越大;0<a<1时,x越大,指数越小。
2、在底数或者指数有一个相同的情况下,可以画图进行比较,较为直观和清晰。
3、若指数和底数都不同,可以取对数计算比较。
扩展资料:
指数:a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
对数:
简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。
1、在比较对数式的大小时,如果底数相同,直接利用对数函数的单调性比较即可;如果底数不相同,则常常引入两个中间量:0和1;
2、比较对数式底数的大小的方法:做直线y=1,直线与函数图像的交点的横坐标就是该函数的底数,然后比较横坐标的大小即可。
指数比大小(y=a^x):
1、a>1时,x越大,指数越大;0<a<1时,x越大,指数越小。
2、在底数或者指数有一个相同的情况下,可以画图进行比较,较为直观和清晰。
3、若指数和底数都不同,可以取对数计算比较。
扩展资料:
指数:a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
对数:
简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询