泰勒公式确定几阶无穷小问题!
f(x)=e^x-1-x-1/2*x*sinx,求当x→0时f(x)关于x的阶数?思路:这个题目先用麦克老林公式把e^x和sinx展开.书上答案是e^x=1+x+(x^2...
f(x)=e^x-1-x-1/2*x*sinx ,求当x→0时f(x)关于x的阶数?
思路:这个题目先用麦克老林公式把e^x和sinx展开.
书上答案是e^x=1+x+(x^2)/2+(x^3)/6+o(x^3)
sinx=x-(x^3)/6+o(x^4)
问题:为什么e^x和sinx分别展开至o(x^3)和o(x^4),
而不展开至o(x^5)或更高项呢?
一楼的:我问的就是问用泰勒公式如何求截...您别一来就按书上的答案...考试的时候没答案啊!!!
确定是几项有什么技巧么??
难道还要把它们都展开???
求得第N阶导数为 0 时再把N带入函数中运算?? 展开
思路:这个题目先用麦克老林公式把e^x和sinx展开.
书上答案是e^x=1+x+(x^2)/2+(x^3)/6+o(x^3)
sinx=x-(x^3)/6+o(x^4)
问题:为什么e^x和sinx分别展开至o(x^3)和o(x^4),
而不展开至o(x^5)或更高项呢?
一楼的:我问的就是问用泰勒公式如何求截...您别一来就按书上的答案...考试的时候没答案啊!!!
确定是几项有什么技巧么??
难道还要把它们都展开???
求得第N阶导数为 0 时再把N带入函数中运算?? 展开
2个回答
展开全部
按书上答案就能知道:当x→0时,f(x)是关于x的3阶无穷小。
如果展开时取的项数比他少,就说明不了这个结论。
如果展开时取的项数比他多,如展开至o(x^5)或更高项,当然也能说明这个结论。
达到同样的结论,当然选用最简洁的方法。
确定是几项有什么技巧么??
展开到出现第1个非0项啊!
如f(x)=e^x-1-x-1/2*x*sinx ,
e^x=1+x+(x^2)/2+(x^3)/6+(x^4)/24+...
xsinx=x^2-(x^4)/6+(x^6)/5!+...
都取到x的1次项:f(x)=(1+x)-1-x-(1/2)*0=0,
都取到x的2次项:f(x)=(1+x+x^2/2)-1-x-(1/2)*x^2=0,
都取到x的3次项:f(x)=(1+x+x^2/2+x^3/6)-1-x-(1/2)*x^2=x^3/6,
都取到x的4次项:f(x)=(1+x+x^2/2+x^3/6+x^4/24)-1-x-(1/2)*x^2-x^4/6=x^3/6+5x^4/24,
......
所以,当x→0时,f(x)是关于x的3阶无穷小。
看到该取几项了吧!
求得第N阶导数为 0 时再把N带入函数中运算??
求导数也可以解这题,
由f(0)=f’(0)=f’’(0)=0,f’’’(0)=1
就知道f(x)是关于x的3阶无穷小,
就不必再用泰勒展式了!用了泰勒展式就不必求导!
如果展开时取的项数比他少,就说明不了这个结论。
如果展开时取的项数比他多,如展开至o(x^5)或更高项,当然也能说明这个结论。
达到同样的结论,当然选用最简洁的方法。
确定是几项有什么技巧么??
展开到出现第1个非0项啊!
如f(x)=e^x-1-x-1/2*x*sinx ,
e^x=1+x+(x^2)/2+(x^3)/6+(x^4)/24+...
xsinx=x^2-(x^4)/6+(x^6)/5!+...
都取到x的1次项:f(x)=(1+x)-1-x-(1/2)*0=0,
都取到x的2次项:f(x)=(1+x+x^2/2)-1-x-(1/2)*x^2=0,
都取到x的3次项:f(x)=(1+x+x^2/2+x^3/6)-1-x-(1/2)*x^2=x^3/6,
都取到x的4次项:f(x)=(1+x+x^2/2+x^3/6+x^4/24)-1-x-(1/2)*x^2-x^4/6=x^3/6+5x^4/24,
......
所以,当x→0时,f(x)是关于x的3阶无穷小。
看到该取几项了吧!
求得第N阶导数为 0 时再把N带入函数中运算??
求导数也可以解这题,
由f(0)=f’(0)=f’’(0)=0,f’’’(0)=1
就知道f(x)是关于x的3阶无穷小,
就不必再用泰勒展式了!用了泰勒展式就不必求导!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询