3个回答
2014-01-23
展开全部
(1)等比数列:a(n+1)/an=q(n∈N)。
(2)通项公式:an=a1×q^(n-1);
推广式:an=am×q^(n-m);
(3)求和公式:Sn=n×a1(q=1)
Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为比值,n为项数)
(4)性质:
①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每k项之和仍成等比数列.
③若m、n、q∈N,且m+n=2q,则am×an=aq^2
(5)"G是a、b的等比中项""G^2=ab(G≠0)".
(6)在等比数列中,首项a1与公比q都不为零.
注意:上述公式中an表示等比数列的第n项。
等比数列求和公式推导:Sn=a1+a2+a3+...+an(公比为q)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)
Sn-q*Sn=a1-a(n+1)
(1-q)Sn=a1-a1*q^n
Sn=(a1-a1*q^n)/(1-q)
Sn=a1(1-q^n)/(1-q)
(2)通项公式:an=a1×q^(n-1);
推广式:an=am×q^(n-m);
(3)求和公式:Sn=n×a1(q=1)
Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为比值,n为项数)
(4)性质:
①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每k项之和仍成等比数列.
③若m、n、q∈N,且m+n=2q,则am×an=aq^2
(5)"G是a、b的等比中项""G^2=ab(G≠0)".
(6)在等比数列中,首项a1与公比q都不为零.
注意:上述公式中an表示等比数列的第n项。
等比数列求和公式推导:Sn=a1+a2+a3+...+an(公比为q)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)
Sn-q*Sn=a1-a(n+1)
(1-q)Sn=a1-a1*q^n
Sn=(a1-a1*q^n)/(1-q)
Sn=a1(1-q^n)/(1-q)
2014-01-23
展开全部
(1)等比数列的通项公式是:An=A1×q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。 (2) 任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。 (5) 等比求和:Sn=a1+a2+a3+.......+an ①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q) ②当q=1时, Sn=n×a1(q=1) 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 谢谢采纳
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-01-23
展开全部
这个问题实在有点难,建议你上谷歌查查!这个问题实在有点难,建议你上谷歌查查!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询