1²+2²+3²+…n²等于多少”

 我来答
xt小涛1201
2014-05-20 · TA获得超过152个赞
知道答主
回答量:74
采纳率:100%
帮助的人:47.5万
展开全部
1²+2²+3²+……+n²=1/6·n(n+1)(2n+1)
证明如下:

不妨设1²+2²+3²+……+n²=S
利用恒等式(n+1)³=n³+3n²+3n+1,得:
(n+1)³-n³=3n²+3n+1
n³-(n-1)³=3(n-1)²+3(n-1)+1
………………………………
3³-2³=3·2²+3·2+1
2³-1³=3·1²+3·1+1
将这n个式子两端分别相加,得:
(n+1)³-1=3(1²+2²+3²+……+n²)+3(1+2+3+……+n)+n
由于1+2+3+4+……+n=n(n+1)/2
代入上式,得:
n³+3n²+3n=3S+3/2×n(n+1)+n
整理后得S=1/6·n(n+1)(2n+1)
即1²+2²+3²+……+n²=1/6·n(n+1)(2n+1)
追问
你这出现乱码了!看不清楚啊!
T_AC
2014-05-20 · TA获得超过231个赞
知道小有建树答主
回答量:193
采纳率:0%
帮助的人:117万
展开全部
n(n+1)(2n+1)/6
追答

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式