满足方程x+y+z=10的正整数解组(x、y、z)的值有几组

 我来答
胡耀游妤
2019-05-01 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:31%
帮助的人:792万
展开全部
当题目是求x<y<z的解时,
首先将所有的正整数解算出来:
当x=1时,y取1-2008,相应地,z取2008-1,共有2008个解,
当x=2时,y取1-2007,相应地,z取2007-1,共有2007个解,
..........
当x=2008时,y取1,相应地,z1,共有1个解。
加起来,1+2+3+.....+2008=(1+2008)×2008/2=2009x1004。
注意,这包括了许多相等的解,以及即便不等,但x>y等等游伏拆的解,需要去除。
分三类:
1)zyx,,均相等的正整数解的个数显然为1;
2)zyx,,中有且仅有2个相等的正整数解的个数,易知为1003
(如x=y,必有z为偶数,z可以取2、4、...2008,共1004种厅棚,但要去除x=y=z=670这一种)
这神枣里面有三种情况,即x=y,y=z,z=x,每一种都是1003个。
3)设zyx,,两两均不相等的正整数解为k
个,这里面按大小分共有6种情况:
即x最大,两种,y最大,两种,z最大,两种。我们只去求其中z最大,x最小的那种,设为k。
所以,1+3x1003+6k=2009x1004
k=335671
,这个解是x<y<z的解。
但是,你的题目是
方程x+y+z=2010满足x≤y≤z的正整数解(x,y,z)的个数
因此,此题的解应该考虑相等的情况。
当x=y<z时,x=y可以取1-669,共669种
当x<y=z时,y=z可以取671-1004,共334种

当x=y=z时,1种,
k=
335671
+669+334+1=336675种。这是你这道题的答案。
陵回荒C7
2019-03-18 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:28%
帮助的人:578万
展开全部
118
127
217
136
226
316
145
235
325
415
154
244
334
424
514
163
253
343
433
523
613
172
262
352
442
532
622
712
181
271
361
451
541
631
721
811
因为如清祥0不是正整数
所以正顷
有渣搏36组
楼主看看对否?要是对了给分哈
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式