已知x>y>0,xy=1,求x^2+y^2/x-y的最小值。
2个回答
展开全部
(x2+y2)/(x-y)=(x2+y2-2xy+2xy)/(x-y)
因为xy=1,所以
=[(x-y)^2+2]/(x-y)
=(x-y)+2/(x-y)
因为x>y>0所以(x-y)>0
所以有不等式的定理知道
(x-y)+2/(x-y)>=2根号喊弯培下[(x-y)*2/(x-y)]=2根号2
而此时(x-y)^2=2符合上面的条件
所以(x2+y2)/(x-y)的最小值为2根号2
这种题目你注意凑个关于不闹樱等式的概念就行。然郑唯后
运用定理就ok了!
因为xy=1,所以
=[(x-y)^2+2]/(x-y)
=(x-y)+2/(x-y)
因为x>y>0所以(x-y)>0
所以有不等式的定理知道
(x-y)+2/(x-y)>=2根号喊弯培下[(x-y)*2/(x-y)]=2根号2
而此时(x-y)^2=2符合上面的条件
所以(x2+y2)/(x-y)的最小值为2根号2
这种题目你注意凑个关于不闹樱等式的概念就行。然郑唯后
运用定理就ok了!
展开全部
(x^2+y^2)/(x-y)
=[(x-y)^2+2xy]/(x-y)
∵xy=1,
∴察改(x^2+y^2)/(x-y)
=[(x-y)^2+2]/(x-y)
=(x-y)+2/(x-y)
∵x>y>0
∴x-y>0
∴根据
基本不等尺手式
:
(x-y)+2/(x-y)
>=2√[(x-y)*2/(x-y)]
=2√2
当且仅当x-y=2/(x-y),即:x-y=√2时等号成立
∵陵没嫌x-y=√2,xy=1,
解得:
x=(√6+√2)/2
Y=(√6-√2)/2
综上所述,
∴(x^2+y^2)/(x-y)的最小值为2√2
当且仅当x=(√6+√2)/2,Y=(√6-√2)/2时成立
=[(x-y)^2+2xy]/(x-y)
∵xy=1,
∴察改(x^2+y^2)/(x-y)
=[(x-y)^2+2]/(x-y)
=(x-y)+2/(x-y)
∵x>y>0
∴x-y>0
∴根据
基本不等尺手式
:
(x-y)+2/(x-y)
>=2√[(x-y)*2/(x-y)]
=2√2
当且仅当x-y=2/(x-y),即:x-y=√2时等号成立
∵陵没嫌x-y=√2,xy=1,
解得:
x=(√6+√2)/2
Y=(√6-√2)/2
综上所述,
∴(x^2+y^2)/(x-y)的最小值为2√2
当且仅当x=(√6+√2)/2,Y=(√6-√2)/2时成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询