二项分布方差公式
3个回答
展开全部
二项分布即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布。
定义:
在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n
=
1时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。
二项分布(Binomial
Distribution),即重复n次的伯努利试验(Bernoulli
Experiment),用ξ表示随机试验的结果。
二项分布公式
如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是
P(ξ=K)=
C(n,k)
*
p^k
*
(1-p)^(n-k),
其中C(n,
k)
=
n!/(k!
*
(n-k)!)注意!:第二个等号后面的括号里的是上标,表示的是方幂。
那么就说这个属于二项分布。
其中P称为成功概率。
记作ξ~B(n,p)期望:Eξ=np
方差:Dξ=npq
其中q=1-p
证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p.因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和.
设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n).
因X(k)相互独立,所以期望:E(X)=E[X(1)+X(2)+X(3)....X(n)]=np.
方差:D(X)=D[X(1)+X(2)+X(3)....X(n)]=np(1-p).
证毕.
以上证明摘自高等教育出版社《概率论与数理统计》第四版
如果
1.在每次试验中只有两种可能的结果,而且是互相对立的;
2.每次实验是独立的,与其它各次试验结果无关;
3.结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努利实验。
在这试验中,事件发生的次数为一随机事件,它服从二次分布.二项分布可
二项分布
以用于可靠性试验。可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率.
若某事件概率为p,现重复试验n次,该事件发生k次的概率为:P=C(n,k)×p^k×(1-p)^(n-k).C(n,k)表示组合数,即从n个事物中拿出k个的方法数。
定义:
在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n
=
1时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。
二项分布(Binomial
Distribution),即重复n次的伯努利试验(Bernoulli
Experiment),用ξ表示随机试验的结果。
二项分布公式
如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是
P(ξ=K)=
C(n,k)
*
p^k
*
(1-p)^(n-k),
其中C(n,
k)
=
n!/(k!
*
(n-k)!)注意!:第二个等号后面的括号里的是上标,表示的是方幂。
那么就说这个属于二项分布。
其中P称为成功概率。
记作ξ~B(n,p)期望:Eξ=np
方差:Dξ=npq
其中q=1-p
证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p.因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和.
设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n).
因X(k)相互独立,所以期望:E(X)=E[X(1)+X(2)+X(3)....X(n)]=np.
方差:D(X)=D[X(1)+X(2)+X(3)....X(n)]=np(1-p).
证毕.
以上证明摘自高等教育出版社《概率论与数理统计》第四版
如果
1.在每次试验中只有两种可能的结果,而且是互相对立的;
2.每次实验是独立的,与其它各次试验结果无关;
3.结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努利实验。
在这试验中,事件发生的次数为一随机事件,它服从二次分布.二项分布可
二项分布
以用于可靠性试验。可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率.
若某事件概率为p,现重复试验n次,该事件发生k次的概率为:P=C(n,k)×p^k×(1-p)^(n-k).C(n,k)表示组合数,即从n个事物中拿出k个的方法数。
展开全部
同学,你给我这个分布列不是二项分布的。是简单随机事件的
其中
n是某个随机变量发生的次数
p是这个事件发生的概率
比如
一个人打枪
100次
有10次
打到10环
已知每次打10环的概率是0.01
那么
n=10
p=0.01
其中
n是某个随机变量发生的次数
p是这个事件发生的概率
比如
一个人打枪
100次
有10次
打到10环
已知每次打10环的概率是0.01
那么
n=10
p=0.01
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(N,P)
N是重复事件发生的次数
P是某件事发生的概率
像你这个分布列
Ex=1*0.5+2*0.3+3*0.2
这是期望
Dx=(1-Ex)平方*p+(2-Ex)平方*p+(3-Ex)平方*p
用那个公式是需要知道发生这件事的的概率的
N是重复事件发生的次数
P是某件事发生的概率
像你这个分布列
Ex=1*0.5+2*0.3+3*0.2
这是期望
Dx=(1-Ex)平方*p+(2-Ex)平方*p+(3-Ex)平方*p
用那个公式是需要知道发生这件事的的概率的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询