
展开全部
利用两个引理就可以了~
(1)对于m乘n阶矩阵A、n乘s阶矩阵B:若AB=0,则r(A)+r(B)<=n
(2)对于n阶矩阵A、B,有r(A+B)<=r(A)+r(B)
证明上面的两个引理:
(1)因为AB=0,所以B的列向量均为AX=0的解,则B的列向量组的秩不超过AX=0的解空间W的维数,即r(B)<=dimW=n-r(A)(齐次线性方程组解空间维数等于未知量个数减去系数矩阵的秩),从而r(A)+r(B)<=n
(2)设a1,…,an为A的列向量,b1,…,bn为B的列向量,不妨设a1,…,ar为A的列向量的极大线性无关组,b1,…,bl为B的列向量的极大线性无关组,则a1,…,an均可由a1,…,ar线性表出,b1,…,bn均可由b1,…,bl线性表出,从而A+B的列向量a1+b1,…an+bn均可由a1,…,ar,b1,…,bl线性表出,从而r(A+B)<=r(a1,…,ar,b1,…,bl)<=r(a1,…,ar)+r(b1,…,bl)=r(A)+r(B)
现在来证明该题:
利用(1),有r(A)+r(A-E)=r(A)+r(E-A)>=r(A+E-A)=r(E)=n
又A^2-A=A(A-E)=0
从而利用(2)可得r(A)+r(A-E)<=n
所以r(A)+r(A-E)=n
(1)对于m乘n阶矩阵A、n乘s阶矩阵B:若AB=0,则r(A)+r(B)<=n
(2)对于n阶矩阵A、B,有r(A+B)<=r(A)+r(B)
证明上面的两个引理:
(1)因为AB=0,所以B的列向量均为AX=0的解,则B的列向量组的秩不超过AX=0的解空间W的维数,即r(B)<=dimW=n-r(A)(齐次线性方程组解空间维数等于未知量个数减去系数矩阵的秩),从而r(A)+r(B)<=n
(2)设a1,…,an为A的列向量,b1,…,bn为B的列向量,不妨设a1,…,ar为A的列向量的极大线性无关组,b1,…,bl为B的列向量的极大线性无关组,则a1,…,an均可由a1,…,ar线性表出,b1,…,bn均可由b1,…,bl线性表出,从而A+B的列向量a1+b1,…an+bn均可由a1,…,ar,b1,…,bl线性表出,从而r(A+B)<=r(a1,…,ar,b1,…,bl)<=r(a1,…,ar)+r(b1,…,bl)=r(A)+r(B)
现在来证明该题:
利用(1),有r(A)+r(A-E)=r(A)+r(E-A)>=r(A+E-A)=r(E)=n
又A^2-A=A(A-E)=0
从而利用(2)可得r(A)+r(A-E)<=n
所以r(A)+r(A-E)=n

2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询