如图,点A,B在圆o上,直线AC是圆o的切线,oc⊥oB,连接AB交oc于点D,请你找出图中一组相
如图,点A,B在圆o上,直线AC是圆o的切线,oc⊥oB,连接AB交oc于点D,请你找出图中一组相等的线段(半经除外)--并给予证明...
如图,点A,B在圆o上,直线AC是圆o的切线,oc⊥oB,连接AB交oc于点D,请你找出图中一组相等的线段(半经除外)--并给予证明
展开
2014-12-24
展开全部
(1)AC=CD,理由为:由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由OC与OB垂直,得到∠BOC为直角,由OA=OB,利用等边对等角得到一对角相等,再利用对顶角相等及等角的余角相等得到一对角相等,利用等角对等边即可得证;
(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的长.
【解析】
(1)AC=CD,理由为:
∵OA=OB,
∴∠OAB=∠B,
∵直线AC为圆O的切线,
∴∠OAC=∠OAB+∠DAC=90°,
∵OB⊥OC,
∴∠BOC=90°,
∴∠ODB+∠B=90°,
∵∠ODB=∠CDA,
∴∠CDA+∠B=90°,
∴∠DAC=∠CDA,
则AC=CD;
(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,
根据勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,
解得:OD=1.
采纳我吧,谢谢
(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的长.
【解析】
(1)AC=CD,理由为:
∵OA=OB,
∴∠OAB=∠B,
∵直线AC为圆O的切线,
∴∠OAC=∠OAB+∠DAC=90°,
∵OB⊥OC,
∴∠BOC=90°,
∴∠ODB+∠B=90°,
∵∠ODB=∠CDA,
∴∠CDA+∠B=90°,
∴∠DAC=∠CDA,
则AC=CD;
(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,
根据勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,
解得:OD=1.
采纳我吧,谢谢
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询