已知真命题:过椭圆x2a2+y2b2=1(a>b>0)左顶点A(-a,0)作两条互相垂直的直线,分别交椭圆于另外两点M
已知真命题:过椭圆x2a2+y2b2=1(a>b>0)左顶点A(-a,0)作两条互相垂直的直线,分别交椭圆于另外两点M、N,则直线MN过定点P(a(a2?b2)a2+b2...
已知真命题:过椭圆x2a2+y2b2=1(a>b>0)左顶点A(-a,0)作两条互相垂直的直线,分别交椭圆于另外两点M、N,则直线MN过定点P(a(a2?b2)a2+b2,0).类比此命题,写出关于抛物线y2=2px(p>0)的一个真命题:______.
展开
1个回答
展开全部
已知过椭圆
+
=1(a>b>0)左顶点A(-a,0)作两条互相垂直的直线,分别交椭圆于另外两点M、N,则直线MN过定点P(
,0).
类比此命题,取特殊的抛物线:直线l与抛物线y2=2x相交于A、B两点,O为抛物线的顶点,若OA⊥OB.证明:直线l过定点如下:
证明:设点A,B的坐标分别为(x1,y1),(x2,y2)
(I)当直线l有存在斜率时,设直线方程为y=kx+b,显然k≠0且b≠0.(2分)
联立方程得:
消去y得k2x2+(2kb-2)x+b2=0
由题意:x1x2=
y1y2=(kx1+b)(kx2+b)=
(5分)
又由OA⊥OB得x1x2+y1y2=0,(7分)
即
+
=0,解得b=0(舍去)或b=-2k(9分)
故直线l的方程为:y=kx-2k=k(x-2),故直线过定点(2,0)(11分)
(II)当直线l不存在斜率时,设它的方程为x=m,显然m>0
联立方程得:
x2 |
a2 |
y2 |
b2 |
a(a2?b2) |
a2+b2 |
类比此命题,取特殊的抛物线:直线l与抛物线y2=2x相交于A、B两点,O为抛物线的顶点,若OA⊥OB.证明:直线l过定点如下:
证明:设点A,B的坐标分别为(x1,y1),(x2,y2)
(I)当直线l有存在斜率时,设直线方程为y=kx+b,显然k≠0且b≠0.(2分)
联立方程得:
|
由题意:x1x2=
b2 |
k2 |
|
2b |
k |
又由OA⊥OB得x1x2+y1y2=0,(7分)
即
b2 |
k2 |
2b |
k |
故直线l的方程为:y=kx-2k=k(x-2),故直线过定点(2,0)(11分)
(II)当直线l不存在斜率时,设它的方程为x=m,显然m>0
联立方程得:
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|