3/7:4/3的化简
解:3/7:4/3=3/7×3/4=9/28=9:28,请参考
由于行列式有着相同的行数和列数,排成的表是正方形的,基于行列式的研究进而发现了矩阵的理论。同是由数排成行和列的数表,矩阵是一个数组,且行数和列数不要求相等。利用矩阵,可以把线性方程组中的系数组成向量空间中的向量;基于矩阵理论,多元线性方程组的解的结构问题,得到彻底解决。除此之外,矩阵在力学、物理、科技等方面得到广泛的应用。
为进一步研究函数的性质,继续通过极限定义了函数的导数和微分,并引入了求导法则和微分中值定理,用于讨论函数的单调性、极值或最值、凸性等问题,还讨论了函数可导与连续的关系。
多项式可视为一类简单的函数,其应用非常广泛。多项式理论的中心问题是,代数方程根的计算和分布,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,寻找解方程的方法。
最后通过极限定义了定积分,然后介绍可积条件、性质,包括定积分中值定理和计算方法等内容,注意定积分采用的定义是黎曼可积,还有一种稍有区别,但适用范围更广的勒贝格积分定义,如此时具有可数间断点的函数可积。
多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。其中整除性质对于解代数方程是很有用的。解代数方程对应多项式的零点问题,零点不存在,所对应的代数方程无解。