积分中的常数为什么可以提出来的

我就是弄不明白为什么积分中的常数可以提到积分号外,而不用参与运算?... 我就是弄不明白为什么积分中的常数可以提到积分号外,而不用参与运算? 展开
 我来答
小小芝麻大大梦
高粉答主

2019-07-25 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:956万
展开全部

由积分的定义知,积分的本质是求和,求和时如果各项有公因数(常数),可先提公因数,剩余的求和,最后再乘这个常数。

积分通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

扩展资料

求积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

创远信科
2024-07-24 广告
介电常数,简称ε,是衡量材料在电场中电介质性能的重要物理量。它描述了材料对电场的响应能力,定义为电位移D与电场强度E之比,即ε=D/E。介电常数越大,材料在电场中的极化程度越高,存储电荷能力越强。在电子和电气工程领域,介电常数对于理解和设计... 点击进入详情页
本回答由创远信科提供
zzz680131
高粉答主

2018-04-08 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.6万
采纳率:78%
帮助的人:7586万
展开全部
由积分的定义知,积分的本质是求和,求和时如果各项有公因数(常数),可先提公因数,剩余的求和,最后再乘这个常数。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式