求解数学题,画圈圈的,必采纳谢谢
展开全部
(4)∫a^xe^xdx
=∫e^(xlna) e^xdx
=∫e^[x(lna+1)]dx
=1/(lna+1)∫e^[x(lna+1)]d(lna+1)
=e^x(lna+1)/(lna+1)+C
=a^xe^x/(lna+1)+C
(8)∫(4-x)/(√x-2)dx
=∫-(√x+2)dx
=-∫x^(1/2)dx-∫2dx
=-2/3x^(3/2)-2x+C
(11)∫【(1+x²)+1】/(1+x²)dx
=∫1+1/(1+x²)dx
=x+arctanx+C
(14)∫(cos²x-sin²x)/cos²xdx
=∫1-tan²xdx
=x-(tanx-x)+C
=2x-tanx+C
=∫e^(xlna) e^xdx
=∫e^[x(lna+1)]dx
=1/(lna+1)∫e^[x(lna+1)]d(lna+1)
=e^x(lna+1)/(lna+1)+C
=a^xe^x/(lna+1)+C
(8)∫(4-x)/(√x-2)dx
=∫-(√x+2)dx
=-∫x^(1/2)dx-∫2dx
=-2/3x^(3/2)-2x+C
(11)∫【(1+x²)+1】/(1+x²)dx
=∫1+1/(1+x²)dx
=x+arctanx+C
(14)∫(cos²x-sin²x)/cos²xdx
=∫1-tan²xdx
=x-(tanx-x)+C
=2x-tanx+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询