矩阵的特征值和特征向量是什么?
1个回答
展开全部
如下:
n阶方阵A,行列式|λE-A| [E是n阶单位矩阵,λ是变量。这是λ的n次多项式,首项系数是1] 叫做A的特征多项式,[f(λ)=|λE-A|].f(λ)=0的根(n个),都叫A的特征值。
如果λ0是A的一个特征值,|λ0E-A|=0,(λ0E-A)为降秩矩阵,线性方程组(λ0E-A)X=0 [X=(x1,x2,……xn)′是未知的n维列向量] 必有非零解,每个非零解就叫矩阵A的关于特征值λ0的一个特征向量。
在三维空间中,旋转矩阵有一个等于单位1的实特征值。旋转矩阵指定关于对应的特征向量的旋转(欧拉旋转定理)。如果旋转角是 θ,则旋转矩阵的另外两个(复数)特征值是 exp(iθ) 和 exp(-iθ)。从而得出 3 维旋转的迹数等于 1 + 2 cos(θ),这可用来快速的计算任何 3 维旋转的旋转角。
特征向量是在矩阵变换下只进行“规则”变换的向量,这个“规则”就是特征值。特征向量反映了线性变换的方向,这这几个方向上线性变换只导致伸缩,没有旋转;特征值反映线性变换在这几个方向上导致的伸缩的大小。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询