求证:三次根号2是无理数

只爱邵婷婷
2008-09-29 · TA获得超过3422个赞
知道小有建树答主
回答量:733
采纳率:0%
帮助的人:0
展开全部
所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。
利用这个主要区别,可以证明三次根号2是无理数。

证明:假设三次根号2不是无理数,而是有理数。
既然三次根号2是有理数,它必然可以写成两个整数之比的形式:
三次根号2=p/q
又由于p和q没有公因数可以约去,所以可以认为p/q 为既约分数,即最简分数形式。
把 三次根号2=p/q 两边三次方
得 2=(p^3)/(q^3)
即 2(q^3)=p^3
由于2q^3是偶数,p 必定为偶数,设p=2m
由 2(q^3)=8(m^3)
得 q^3=4m^3
同理q必然也为偶数,设q=2n
既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是既约分数矛盾。这个矛盾是有假设三次根号2是有理数引起的。因此三次根号2是无理数。

参考资料: 会了吗?

偶秀芳宫词
2019-07-14 · TA获得超过3.5万个赞
知道小有建树答主
回答量:1.3万
采纳率:26%
帮助的人:842万
展开全部
哈哈,我做过,正确的反证法如下:
假如根号2是有理数,那么它一定可以用一个最简的(不能再约分的)分数m/n表示
则:m^2/n^2=2
所以m^2=2*n^2
所以m是偶数
假设m=2k,那么2*n^2=4*k^2
所以n^2=2*k^2
所以说n也是偶数
既然m,n都是偶数,那么m/n就不是最简分数,与原设相矛盾
故根号2是无理数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式