若x1、x2是方程4x2-5x-1=0的两根,不解方程,求下列各式的值。
若x1、x2是方程4x2-5x-1=0的两根,不解方程,求下列各式的值。(1)x1²+x2²(2)x1/x2+x2/x1(3)1/x1-2+1/x2-...
若x1、x2是方程4x2-5x-1=0的两根,不解方程,求下列各式的值。
(1)x1²+x2² (2)x1/x2+x2/x1 (3)1/x1-2+1/x2-2 (4)(x1-x2)² 展开
(1)x1²+x2² (2)x1/x2+x2/x1 (3)1/x1-2+1/x2-2 (4)(x1-x2)² 展开
1个回答
展开全部
解:根据韦达定理可得:
x1+x2=5/4, x1x2=-1/4
1、x1²+x2²=(x1+x2)²-2x1x2=(5/4)²-2X(-1/4)=33/16
2、x1/x2+x2/x1=(x1²+x2²)/x1x2=(5/4)/(-1/4)=-5
3、1/(x1-2)+1/(x2-2)
=[(x2-2)+(x1-2)]/(x1-2)(x2-2)
=(x1+x2-4)/[x1x2-2(x1+x2)+4]
=(5/4-4)/(-1/4-2x5/4+4)
=-11/5
4、(x1-x2)²=(x1+x2)²-4x1x2=(5/4)²-4X(-1/4)=41/16
x1+x2=5/4, x1x2=-1/4
1、x1²+x2²=(x1+x2)²-2x1x2=(5/4)²-2X(-1/4)=33/16
2、x1/x2+x2/x1=(x1²+x2²)/x1x2=(5/4)/(-1/4)=-5
3、1/(x1-2)+1/(x2-2)
=[(x2-2)+(x1-2)]/(x1-2)(x2-2)
=(x1+x2-4)/[x1x2-2(x1+x2)+4]
=(5/4-4)/(-1/4-2x5/4+4)
=-11/5
4、(x1-x2)²=(x1+x2)²-4x1x2=(5/4)²-4X(-1/4)=41/16
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询