高数积分题,请帮帮忙,谢谢!题目如图。
1个回答
展开全部
let
x= asiny
dx= acosy dy
x=0 , y=0
x=a ,y=π/2
∫(0->a) dx/(x+√(a^2-x^2)
=∫(0->π/2) cosy /(siny+cosy ) dy
let
cosy = k1(siny +cosy) + k2(cosy -siny)
k1-k2 =0 (1)
k1+k2=1 (2)
(1)+(2)
k1=1/2
from (1)
k2 =1/2
∫(0->a) dx/(x+√(a^2-x^2)
=∫(0->π/2) cosy /(siny+cosy ) dy
=(1/2)∫(0->π/2) (siny+cosy) /(siny+cosy ) dy
+(1/2)∫(0->π/2) (cosy-siny) /(siny+cosy ) dy
=(1/2) [y]|(0->π/2) + (1/2) [ln|siny+cosy|] |(0->π/2)
=π/4
x= asiny
dx= acosy dy
x=0 , y=0
x=a ,y=π/2
∫(0->a) dx/(x+√(a^2-x^2)
=∫(0->π/2) cosy /(siny+cosy ) dy
let
cosy = k1(siny +cosy) + k2(cosy -siny)
k1-k2 =0 (1)
k1+k2=1 (2)
(1)+(2)
k1=1/2
from (1)
k2 =1/2
∫(0->a) dx/(x+√(a^2-x^2)
=∫(0->π/2) cosy /(siny+cosy ) dy
=(1/2)∫(0->π/2) (siny+cosy) /(siny+cosy ) dy
+(1/2)∫(0->π/2) (cosy-siny) /(siny+cosy ) dy
=(1/2) [y]|(0->π/2) + (1/2) [ln|siny+cosy|] |(0->π/2)
=π/4
更多追问追答
追问
谢谢 可以用笔写拍照吗,有点头绪,但还不太明白
请问下最后一步是怎么算了等于π/4的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询