1/(2.5)+1/(3.6)+....+1/(n+1)( n+4)+..
展开全部
1/(2×5)+ 1/(3×6)+...+1/[(n+1)(n+4)]
=⅓×[1/2 -1/5 +1/3 -1/6+...+1/(n+1) -1/(n+4)]
=⅓×[(1/2 +1/3+...+1/(n+1))-(1/5 +1/6+...+1/(n+4))]
=⅓×[1/2 +1/3 +1/4 -1/(n+2) -1/(n+3) -1/(n+4)]
=13/36 -1/(3n+6) -1/(3n+9) -1/(3n+12)
lim 1/(2×5)+ 1/(3×6)+...+1/[(n+1)(n+4)]
n→∞
=lim [13/36 -1/(3n+6) -1/(3n+9) -1/(3n+12)]
n→∞
=13/36 -0 -0 -0
=13/36
=⅓×[1/2 -1/5 +1/3 -1/6+...+1/(n+1) -1/(n+4)]
=⅓×[(1/2 +1/3+...+1/(n+1))-(1/5 +1/6+...+1/(n+4))]
=⅓×[1/2 +1/3 +1/4 -1/(n+2) -1/(n+3) -1/(n+4)]
=13/36 -1/(3n+6) -1/(3n+9) -1/(3n+12)
lim 1/(2×5)+ 1/(3×6)+...+1/[(n+1)(n+4)]
n→∞
=lim [13/36 -1/(3n+6) -1/(3n+9) -1/(3n+12)]
n→∞
=13/36 -0 -0 -0
=13/36
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询