能不能帮我化简一下第二个图两个方程是怎么化简到最后那个微分方程的。我做了很多次都画不对!感谢!
展开全部
方程中没有vc(t)和iL(t)了,因此是将v(t)和iL(t)消去之后得到最后的微分方程的:
由第一式的:vc(t)=e(t)-R1i(t)
求导:dvc(t)/dt=de(t)/dt-R1di(t)/dt;
由原第三式:iL(t)=i(t)-Cdvc(t)/dt
=i(t)-Cde(t)/dt+R1Cdi(t)/dt
求导:
diL(t)/dt=di(t)/dt-Cd²e(t)/dt²+R1Cd²i(t)/dt²
上面各式代入原来第二式得:
e(t)-R1i(t)=L[di(t)/dt-Cd²e(t)/dt²+R1Cd²i(t)/dt²]+R2[i(t)-Cde(t)/dt+R1Cdi(t)/dt]
e(t)-R1i(t)=Ldi(t)/dt-LCd²e(t)/dt²+R1LCd²i(t)/dt²+R2i(t)-R2Cde(t)/dt+R1R1Cdi(t)/dt
R1LCd²i(t)/dt²+[L+R1R2C]di(t)/dt+(R1+R2)i(t)=LCd²e(t)/dt²+[R2C]de(t)/dt+e(t)
R1=1,R2=3/2,C=1,L=1/4代入:
(1/4)d²i(t)/dt²+[1/4+3/2]di(t)/dt+(1+3/2)i(t)=(1/4)d²e(t)/dt²+[3/2]de(t)/dt+e(t)
(1/4)d²i(t)/dt²+[7/4]di(t)/dt+(5/2)i(t)=(1/4)d²e(t)/dt²+[3/2]de(t)/dt+e(t)
d²i(t)/dt²+7di(t)/dt+10i(t)=d²e(t)/dt²+6de(t)/dt+4e(t)
由第一式的:vc(t)=e(t)-R1i(t)
求导:dvc(t)/dt=de(t)/dt-R1di(t)/dt;
由原第三式:iL(t)=i(t)-Cdvc(t)/dt
=i(t)-Cde(t)/dt+R1Cdi(t)/dt
求导:
diL(t)/dt=di(t)/dt-Cd²e(t)/dt²+R1Cd²i(t)/dt²
上面各式代入原来第二式得:
e(t)-R1i(t)=L[di(t)/dt-Cd²e(t)/dt²+R1Cd²i(t)/dt²]+R2[i(t)-Cde(t)/dt+R1Cdi(t)/dt]
e(t)-R1i(t)=Ldi(t)/dt-LCd²e(t)/dt²+R1LCd²i(t)/dt²+R2i(t)-R2Cde(t)/dt+R1R1Cdi(t)/dt
R1LCd²i(t)/dt²+[L+R1R2C]di(t)/dt+(R1+R2)i(t)=LCd²e(t)/dt²+[R2C]de(t)/dt+e(t)
R1=1,R2=3/2,C=1,L=1/4代入:
(1/4)d²i(t)/dt²+[1/4+3/2]di(t)/dt+(1+3/2)i(t)=(1/4)d²e(t)/dt²+[3/2]de(t)/dt+e(t)
(1/4)d²i(t)/dt²+[7/4]di(t)/dt+(5/2)i(t)=(1/4)d²e(t)/dt²+[3/2]de(t)/dt+e(t)
d²i(t)/dt²+7di(t)/dt+10i(t)=d²e(t)/dt²+6de(t)/dt+4e(t)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询