收敛域和收敛区间的区别是什么?
一、区间闭合不同:
收敛区间是个开区间,而收敛域就是判断在收敛区间的端点上是否收敛。
如果幂级数的收敛半径为r,则不管端点收敛性如何,直接结论收敛区间(-r,r)。如果进一步讨论,该级数在点-r或r处的收敛性。
二、收敛不同:
收敛域一定要注意端点的收敛性,要判断端点是否收敛,之后在确定这个区间的开闭问题。如果这个端点是收敛的,那么在写收敛域的时候一定要把这个点包括进去,即在这个端点闭合起来。
因此,收敛域有可能是开区间(即两个端点都是发散的),有可能是半闭半开区间(即在闭合点处收敛),有可能是全闭合区间(即两个端点都是收敛的)。
扩展资料:
收敛域:可以是开区间也可以是闭区间。要判断级数的绝对收敛半径、端点处的收敛情况、端点是否可取,可能是开区间,可能是闭区间或半开半闭,以此确定收敛域。
收敛区间直接根据收敛半径而得,收敛域是讨论收敛区间两端点收敛性后的结论。收敛区间可能同于收敛域,可能是收敛域的子集。
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。