如何用导数求定积分
展开全部
定积分求导公式:
例题:
扩展资料:
定积分一般定理:
1、设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
2、设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
3、设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
3、牛顿-莱布尼茨公式:
如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么
用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。
一般求导公式:
1、C'=0(C为常数);
2、(Xn)'=nX(n-1) (n∈R);
3、(sinX)'=cosX;
4、(cosX)'=-sinX;
5、(aX)'=aXIna (ln为自然对数);
6、(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1);
7、(tanX)'=1/(cosX)2=(secX)2
8.、cotX)'=-1/(sinX)2=-(cscX)2
9、(secX)'=tanX secX;
10、(cscX)'=-cotX cscX;
参考资料:百度百科-定积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询