(1+cosθ+cos2θ+……+cosnθ)+i(sinθ+sin2θ+……sinnθ)
(1+cosθ+cos2θ+……+cosnθ)+i(sinθ+sin2θ+……sinnθ)
原式=1+(cosθ+isinθ)+(cos2θ+isin2θ)+...+(cosnθ+isinnθ)
=1+e^(θi)+e^(2θi)+...+e^(nθi) (尤拉公式)
=[1-(e^(θi))^(n+1)]/(1-e^(θi)
=[1-(e^(θi))^(n+1)]/(1-e^(θi))
=[1-(e^((n+1)θi))]/(1-e^(θi))
=[1-cos(n+1)θ-isin(n+1)θ]/(1-cosθ-isinθ)
=2sin((n+1)θ/2)[sin((n+1)θ/2)-icos((n+1)θ/2)]/[2sin(θ/2)(sin(θ/2)-icos(θ/2))]
=(sin((n+1)θ/2)/(sin(θ/2))[cos((n+1)θ/2-π/2)+isin((n+1)θ/2-π/2)]/(cos(θ/2-π/2)+isin(θ/2-π/2))
=(sin((n+1)θ/2)/(sin(θ/2))(cos(nθ/2)+isin(nθ/2))
=(sin((n+1)θ/2)cos(nθ/2)/(sin(θ/2))+i(sin((n+1)θ/2)sin(nθ/2)/(sin(θ/2))
希望能帮到你!
求cosα+cos2α+cos3α+,+cosnα的值 sinα+sin2α+sin3α+,+sinNα
sin3α + sinα = 2sin2α cosα
cos3α + cosα = 2cos2α cosα
所以sin2α / cos2α = -4 cosα / sinα
解这个三角方程即可得cosα = -1/√3
化简:(sinα+sin2α)/(1+cosα+cos2α)
用a
原式=(sina+2sinacosa)/(1+cosa+2cos²a-1)
=sina(1+2cosa)/cosa(1+2cosa)
=sina/cosa
=tana
证明(sinα+sin2α)/(1+cosα+cos2α)=tanα
(sinα+sin2α)/(1+cosα+cos2α) =(sinα+2sinα*cosα)/(cosα+2cosα*cosα) =[sinα(1+2cosα)]/[cosα(1+2cosα)] =tanα
(sinα+sin2α+.+sin(nα))/(coaα+cos2α+.+cosnα)化简
分子分母同乘以 sin(a/2)
分子变成:½ ( cos(a/2)-cos(3a/2) + cos(3a/2)-cos(5a/2) + ... +cos((2n-1)a/2)-cos((2n+1)a/2)) = ½ (cos(a/2)-cos((2n+1)a/2)) = sin(na/2) sin((n+1)a/2)
分母变成:½ ( -sin(a/2)+sin(3a/2) -sin(3a/2)+sin(5a/2) -... -sin((2n-1)a/2)+sin((2n+1)a/2)) = ½ (-sin(a/2)+sin((2n+1)a/2)) = sin(na/2) cos((n+1)a/2)
所以原式 = tan((n+1)a/2)
sinθ+2cosθ=0,求(cos2θ-sin2θ)/(1+cos平方θ)的值
sinθ+2cosθ=0
sinθ=-2cosθ
(cos2θ-sin2θ)/(1+cos²θ)
=(cos²θ-sin²θ-2sinθcosθ)/(cos²θ+sin²θ+cos²θ)
=(cos²θ-4cos²θ+4cos²θ)/(cos²θ+4cos²θ+cos²θ)
=cos²θ/6cos²θ
=1/6
化简cos2(x)/1+sin(x) +sin2(x)/1+cos(x)
原式=[1-(sinx)^2]/(1+sinx)+[1-(cosx)^2]/(1+cosx)
=(1-sinx)+(1-cosx)
=2-sinx-cosx
已知sinθ+2cosθ=0求1+cos^2θ分之cos2θ-sin2θ的值
由sinθ+2cosθ=0,得tanθ=-2 .1+cos^2θ分之cos2θ-sin2θ=2倍的cosθ的平方+sinθ的平方分之cosθ的平方-sinθ的平方-2倍的sinθcosθ=2+tanθ的平方分之1-tanθ的平方-2倍的tanθ=1/6
若tanθ=2.则(sin2θ-cos2θ)/1+cos^2θ等于
(sin2θ-cos2θ)/(1+cos^2θ)
=[2sinθcosθ-(cosθ)^2+(sinθ)^2]/[(sinθ)^2+(cosθ)^2+(cosθ)^2]
【分子分母都除以(cosθ)^2】
=[2tanθ+(tanθ)^2-1]/[(tanθ)^2+2]
=(2×2+2^2-1)/(2^2+2)
=7/6
已知sinΦ + 2cosΦ = 0 ,求〔cos2Φ-sin2Φ)/(1+cosΦ平方)的值
由sinΦ + 2cosΦ = 0
知tanΦ=-2
由三角万能公式得
原式等于 1-3tan平方Φ=-11