自然对数的底数e
自然对数e其值约等于2.71828。
自然对数以常数e为底数的对数。记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。若为了避免与基为10的常用对数lgx混淆,可用“全写”㏒ex。
自然对数e的历史:
在1614年开始有对数概念,约翰·纳皮尔以及Jost Bürgi(英语:Jost Bürgi)在6年后,分别发表了独立编制的对数表,当时通过对接近1的底数的大量乘幂运算,来找到指定范围和精度的对数和所对应的真数,当时还没出现有理数幂的概念。
1742年William Jones(英语:William Jones (mathematician))才发表了幂指数概念。
自然底数
对于数列{(1+1/n)^n},当n趋于正无穷时该数列所取得的极限就是e,即e=lim(1+1/n)^n。
数e的某些性质使得它作为对数系统的底时有特殊的便利。以e为底的对数称为自然对数。用不标出底的记号ln来表示它;在理论的研究中,总是用自然对数。
自然对数e的来历
e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:当n->∞时,(1+1/n)^n的极限。注:x^y表示x的y次方。随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?
其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。e在科学技术中用得非常多,一般不使用以10为底数的对数。
以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。
2021-01-25 广告