求极限的夹逼定理证明过程

 我来答
教育小百科达人
2023-01-15 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:471万
展开全部

定理如下图:

函数极限可以分成  ,而运用ε-δ定义更多的见诸已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。

以  的极限为例,f(x) 在点  以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数  ,使得当x满足不等式  时,对应的函数值f(x)都满足不等式:

 ,那么常数A就叫做函数f(x)当 x→x。时的极限。


扩展资料:


有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。

1.夹逼定理:

(1)当  (这是  的去心邻域,有个符号打不出)时,有 成立。

(2)  ,那么,f(x)极限存在,且等于A,不但能证明极限存在,还可以求极限,主要用放缩法。

2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

参考资料:百度百科---函数极限

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式