已知a,b,c均为正实数,求证a的平方+b的平方+c的平方大于等于ab+bc+ac
展开全部
因为(a-b)^2≥0,(a-c)^2≥0,(c-b)^2≥0,
两边展开并相加,有a2-2ab+b2+a2-2ac+c2+c2-2bc+b2≥0,
化简得,2(a2+b2+c2-ab-ab-c-bc)≥0
所以,a2+b2+c2-ab-ab-bc≥0
即a2+b2+c2≥ab+ab+bc
两边展开并相加,有a2-2ab+b2+a2-2ac+c2+c2-2bc+b2≥0,
化简得,2(a2+b2+c2-ab-ab-c-bc)≥0
所以,a2+b2+c2-ab-ab-bc≥0
即a2+b2+c2≥ab+ab+bc
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,...
点击进入详情页
本回答由大雅新科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询