微分等于导数吗?
1个回答
展开全部
函数在某点处的微分是:
【微分 = 导数 乘以 dx】
也就是,dy = f'(x) dx。
.
不过,我们的微积分教材上,经常出现
dy = f'(x) Δx 这种乱七八糟的写法,更
会有一大段利令智昏的解释。
.
Δx 差值,是增值,是增量,是有限的值,是有限的小,但不是无穷小;
f'(x) Δx 因此也就是有限的小,但不是无穷小。
dx 是无穷小,是无穷小的差值,是无穷小的增值。
.
只有当 Δx 趋向于 0 时,写成 dx,
导数的定义就是如此!
.
如果 Δx 可以是无穷小,那导数的定义纯属多此一举,纯属概念错乱。
.
【敬请】
敬请有推选认证《专业解答》权限的达人,
千万不要将本人对该题的解答认证为《专业解答》。
.
一旦被认证为《专业解答》,所有网友都无法进行评论、公议、纠错。
本人非常需要倾听对我解答的各种反馈,请不要认证为《专业回答》。
.
请体谅,敬请切勿认证。谢谢体谅!谢谢理解!谢谢!谢谢!
【微分 = 导数 乘以 dx】
也就是,dy = f'(x) dx。
.
不过,我们的微积分教材上,经常出现
dy = f'(x) Δx 这种乱七八糟的写法,更
会有一大段利令智昏的解释。
.
Δx 差值,是增值,是增量,是有限的值,是有限的小,但不是无穷小;
f'(x) Δx 因此也就是有限的小,但不是无穷小。
dx 是无穷小,是无穷小的差值,是无穷小的增值。
.
只有当 Δx 趋向于 0 时,写成 dx,
导数的定义就是如此!
.
如果 Δx 可以是无穷小,那导数的定义纯属多此一举,纯属概念错乱。
.
【敬请】
敬请有推选认证《专业解答》权限的达人,
千万不要将本人对该题的解答认证为《专业解答》。
.
一旦被认证为《专业解答》,所有网友都无法进行评论、公议、纠错。
本人非常需要倾听对我解答的各种反馈,请不要认证为《专业回答》。
.
请体谅,敬请切勿认证。谢谢体谅!谢谢理解!谢谢!谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询