求|x-2|-|3x+6|的最大值
3个回答
展开全部
首先,|x-2|的最大值为x-2,当x>=2时取到。同理,|3x+6|的最大值为3x+6,当x<=-2时取到。因此,当x>=2时,原式可化简为x-2-3x-6=-2x-8;当x<=-2时,原式可化简为-(x-2)-3x-6=-4x-4。因此要求原式的最大值,只需要判断-2x-8和-4x-4哪个更大。这两个式子都是关于x的一次函数,因此它们的最大值只有一个,可以通过求导或画出函数图像进行判断。经计算得知,当x=-5/2时| x-2|-|3x+6|取到最大值18,因此最大值为18。
杭州彩谱科技有限公司
2020-07-03 广告
2020-07-03 广告
测色仪L、a、b、c、h的意思,L代表明暗度(黑白),a代表红绿色,b代表黄蓝色,c表示彩度(色彩饱和的程度或纯粹度),h表示色调角。测色仪,广泛应用于塑胶、印刷、油漆油墨、纺织、印染服装等行业的颜色管理领域,根据CIE色空间的Lab,Lc...
点击进入详情页
本回答由杭州彩谱科技有限公司提供
展开全部
为了求解|x-2|-|3x+6|的最大值,我们需要用到一些数学方法。首先,可以看到式子中存在绝对值符号,因此需要拆分成不同的情况进行分析。当x≥2时,|x-2|=x-2,|3x+6|=3x+6,因此|x-2|-|3x+6|=x-2-3x-6=-2x-8。当x<2且x≥-2时,|x-2|=2-x,|3x+6|=-(3x+6),因此|x-2|-|3x+6|=2-x+3x+6=x+8。当x<-2时,|x-2|=-(x-2)=2-x,|3x+6|=-(3x+6),因此|x-2|-|3x+6|=2-x-3x-6=-4x-4。综上所述,我们可以得出函数的表达式:
f(x) = { -2x-8, x≥2
{ x+8, -2≤x<2
{ -4x-4, x<-2
我们可以继续将这个函数化简为分段函数,得到最终的函数表达式:
f(x) = {-2x-8, x≥2
{ 4x+12, x<-2
{ 0, -2≤x<2
因此,当x≥2时,函数取最小值-12,当x<-2时,函数取最小值4,而当-2≤x<2时,函数取最大值0。因此,|x-2|-|3x+6|的最大值为0,当且仅当-2≤x<2时成立。
f(x) = { -2x-8, x≥2
{ x+8, -2≤x<2
{ -4x-4, x<-2
我们可以继续将这个函数化简为分段函数,得到最终的函数表达式:
f(x) = {-2x-8, x≥2
{ 4x+12, x<-2
{ 0, -2≤x<2
因此,当x≥2时,函数取最小值-12,当x<-2时,函数取最小值4,而当-2≤x<2时,函数取最大值0。因此,|x-2|-|3x+6|的最大值为0,当且仅当-2≤x<2时成立。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考虑解析绝对值,当$x\ge2$时,$|x-2|=x-2$;当$x<2$时,$|x-2|=2-x$。当$3x+6\ge0$时,$|3x+6|=3x+6$,当$3x+6<0$时,$|3x+6|=-(3x+6)=6-3x$。故当$x\ge-2$时,$|x-2|-(3x+6)=x-2-3x-6=-2x-8$;当$x<2$时,$|x-2|-(3x+6)=2-x-3x-6=-4x-4$。解方程$-2x-8=0$和$-4x-4=0$,得到$x=-4$和$x=-1$,此时为最大值,为$\boxed{4} $。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询