数学中证明线的垂直有几种方法
3个回答
展开全部
在几何学中, 两条隐举直线垂直是一个常见的问题. 两条直线垂直分为平面上的两条直线垂直和空间中的两条直线垂直( 或称异面垂直) . 证明两条直线垂直的方法很多, 常用的方法有: 平面几何法; 立体几何法; 解析法; 向量法.
首先要分几族搭何法与代数法
其次
三垂线定理
在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
逆定理
三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂兆携拿直于这条斜线在平面内的射影。
首先要分几族搭何法与代数法
其次
三垂线定理
在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
逆定理
三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂兆携拿直于这条斜线在平面内的射影。
展开全部
全困清局等,相似汪让,垂直平分线,正弦余弦正历正切余切,勾股定理的逆定理,圆内直径所对的圆周角,菱形对角线的夹角,矩形的四个角,等腰三角形三线(顶角的角平分线,底边的高和底边的垂直平分线)与底边的夹角,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
①桥隐弯可以直接证明敏闷它们的夹角为90°
②证明其它两个角互余
如果你是高中生的话,还可以证明两条直线的斜率的乘积等携岁于-1
(希望能对你有所帮助。。。)
②证明其它两个角互余
如果你是高中生的话,还可以证明两条直线的斜率的乘积等携岁于-1
(希望能对你有所帮助。。。)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询