已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连接AD、BE交于点P,作BQ⊥AD,垂足

已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连接AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ.... 已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连接AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ. 展开
 我来答
遗忘忆笙0JWb3b
推荐于2016-07-11 · TA获得超过114个赞
知道答主
回答量:129
采纳率:0%
帮助的人:177万
展开全部
证明:∵△ABC是等边三角形,
∴AB=AC=BC,∠C=∠ABC=60°,
∵AE=CD,
∴EC=BD;
∴△BEC≌△ADB(SAS),
∴∠EBC=∠BAD;
∵∠ABE+∠EBC=60°,则∠ABE+∠BAD=60°,
∵∠BPQ是△ABP外角,
∴∠ABP+∠BAP=60°=∠BPQ,
又∵BQ⊥AD,
∴∠PBQ=30°,
∴BP=2PQ.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式