高中数学选修有哪些
5个回答
展开全部
数学1:集合;函数概念与基本初等函数Ⅰ 数学2:立体几何初步(柱锥台);平面解析几何初步(直线与圆的方程) 数学3:算法初步;统计;概率 数学4:三角函数;平面向量;三角恒等变换 数学5:解三角形 11.1正弦定理 11.2余弦定理 11.3正弦定理、余弦定理的应用 数列;不等式 选修系列1 1-1 第1章 常用逻辑用语 第2章 圆锥曲线与方程 2.1圆锥曲线 2.2椭圆 2.3双曲线 2.4抛物线 2.5圆锥曲线与方程 第3章 导数及其应用 3.1导数的概念 3.2导数的运算 3.3导数在研究函数中的应用 3.4导数在实际生活中的应用 1-2 第1章 统计案例 1.1假设检验 1.2独立性检验 1.3线性回归分析 1.4聚类分析 第2章 推理与证明 2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3公理化思想 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 5.2结构图 选修系列2 2-1 第1章 常用逻辑用语 1.1命题及其关系 1.2简单的逻辑连接词 1.3全称量词与存在量词 第2章 圆锥曲线与方程 2.1圆锥曲线 2.2椭圆 2.3双曲线 2.4抛物线 2.5圆锥曲线的统一定义 2.6曲线与方程 第3章 空间向量与立体几何 3.1空间向量及其运算 3.2空间向量的应用 2-2 第1章 导数及其应用 1.1导数的概念 1.2导数的运算 1.3导数在研究函数中的应用 1.4导数在实际生活中的应用 1.5定积分 第2章 推理与证明 2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3数学归纳法 2.4公理化思想 第3章 数系的扩充与复数的引入 6.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 2-3 第1章 计数原理 1.1两个基本原理 1.2排列 1.3组合 1.4计数应用题 1.5二项式定理 第2章 概率 2.1随机变量及其概率分布 2.2超几何分布 2.3独立性 2.4二项分布 2.5离散型随机变量的均值与方差 2.6正态分布 第3章 统计案例 3.1假设检验 3.2独立性检验 3.3线性回归分析 4.4聚类分析
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
A版有13本和B版有14本
数学1- 1 (选修)A版
数学1- 2 (选修)A版
数学2- 1 (选修)A版
数学2- 2 (选修)A版
数学2- 3 (选修)A版
数学3- 1 (选修)A版 数学史选讲
数学3- 4 (选修)A版 对称与群
数学4- 1 (选修)A版 几何证明选讲
数学4- 2 (选修)A版 矩阵与变换
数学4- 4 (选修)A版 坐标与参数方程
数学4- 5 (选修)A版 不等式选讲
数学4- 6 (选修)A版 初等数论初步
数学4- 7 (选修)A版 优选法与试验设计初步
数学1- 1 (选修)B版
数学1- 2 (选修)B版
数学2- 1 (选修)B版
数学2- 2 (选修)B版
数学2- 3 (选修)B版
数学3- 1 (选修)B版 对称与群
数学3- 4 (选修)B版 数学史选讲
数学4- 1 (选修)B版 几何证明选讲
数学4- 2 (选修)B版 矩阵与变换
数学4- 4 (选修)B版 坐标系与参数方程
数学4- 5 (选修)B版 不等式选讲
数学4- 6 (选修)B版
数学4- 7 (选修)B版 优选法与实验设计初步
数学4- 9 (选修)B版 风险与决策
数学1- 1 (选修)A版
数学1- 2 (选修)A版
数学2- 1 (选修)A版
数学2- 2 (选修)A版
数学2- 3 (选修)A版
数学3- 1 (选修)A版 数学史选讲
数学3- 4 (选修)A版 对称与群
数学4- 1 (选修)A版 几何证明选讲
数学4- 2 (选修)A版 矩阵与变换
数学4- 4 (选修)A版 坐标与参数方程
数学4- 5 (选修)A版 不等式选讲
数学4- 6 (选修)A版 初等数论初步
数学4- 7 (选修)A版 优选法与试验设计初步
数学1- 1 (选修)B版
数学1- 2 (选修)B版
数学2- 1 (选修)B版
数学2- 2 (选修)B版
数学2- 3 (选修)B版
数学3- 1 (选修)B版 对称与群
数学3- 4 (选修)B版 数学史选讲
数学4- 1 (选修)B版 几何证明选讲
数学4- 2 (选修)B版 矩阵与变换
数学4- 4 (选修)B版 坐标系与参数方程
数学4- 5 (选修)B版 不等式选讲
数学4- 6 (选修)B版
数学4- 7 (选修)B版 优选法与实验设计初步
数学4- 9 (选修)B版 风险与决策
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数学归纳法,概率与统计,平均分布与几何分布等。
数学归纳法(Mathematical Induction, MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。
研究自然界中随机现象统计规律的数学方法,叫做概率统计,又称数理统计方法。
均匀分布(Uniform Distribution)是概率统计中的重要分布之一。
顾名思义,均匀,表示可能性相等的含义。
几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k次成功的概率。
数学归纳法(Mathematical Induction, MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。
研究自然界中随机现象统计规律的数学方法,叫做概率统计,又称数理统计方法。
均匀分布(Uniform Distribution)是概率统计中的重要分布之一。
顾名思义,均匀,表示可能性相等的含义。
几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k次成功的概率。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询