如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于D点,与边AC交于E点,过D作DF⊥AC于F.(1)求证:DF
如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于D点,与边AC交于E点,过D作DF⊥AC于F.(1)求证:DF是⊙O的切线;(2)若DE=5,AB=5,求A...
如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于D点,与边AC交于E点,过D作DF⊥AC于F.(1)求证:DF是⊙O的切线; (2)若DE=5,AB=5,求AE的长.
展开
展开全部
(1)证明:如图,连接OD、AD.
∵AB是直径,
∴∠ADB=90°,即AD⊥BC.
∵AB=AC,
∴AD是△ABC的中线,即D是BC的中点,
∵O是AB的中点,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线;
(2)解:过D作DG⊥AB,垂足为G.
由(1)知,AD是等腰△ABC底边BC的中线、高线,
∴AD平分∠BAC,
∴DE=DB=
.
在Rt△ABD中,AD=
=
=2
,
在Rt△ABD中,S△ABD=
?AD?DB=
?AB?DG,即
×2
×
=
×5?DG,
∴DG=2.
∵AD平分∠BAC,DF⊥AC,DG⊥AB,
∴DF=DG=2,
在Rt△DEF中,EF=
∵AB是直径,
∴∠ADB=90°,即AD⊥BC.
∵AB=AC,
∴AD是△ABC的中线,即D是BC的中点,
∵O是AB的中点,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线;
(2)解:过D作DG⊥AB,垂足为G.
由(1)知,AD是等腰△ABC底边BC的中线、高线,
∴AD平分∠BAC,
∴DE=DB=
5 |
在Rt△ABD中,AD=
AB2?DB2 |
52?(
|
5 |
在Rt△ABD中,S△ABD=
1 |
2 |
1 |
2 |
1 |
2 |
5 |
5 |
1 |
2 |
∴DG=2.
∵AD平分∠BAC,DF⊥AC,DG⊥AB,
∴DF=DG=2,
在Rt△DEF中,EF=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|