已知sinA+sinB=sinC,cosA+cosB=cosC,求cos的值

 我来答
yiyuanyi译元
2015-06-29 · TA获得超过14.4万个赞
知道大有可为答主
回答量:2.9万
采纳率:72%
帮助的人:9131万
展开全部
sinA+sinB=sinC,cosA+cosB=cosC
(sinA)^2+(sinB)^2+2sinAsinB=(sinC)^2
(cosA)^2+(cosB)^2+2cosAcosB=(cosC)^2
(sinA)^2+(cosA)^2+(sinB)^2+(cosB)^2+2sinAsinB+2cosAcosB=(sinC)^2+(cosC)^2
1+1+2sinAsinB+2cosAcosB=1
sinAsinB+cosAcosB=-1/2
cos(A-B)=-1/2
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式