已知sinA+sinB=sinC,cosA+cosB=cosC,求cos的值
1个回答
展开全部
sinA+sinB=sinC,cosA+cosB=cosC
(sinA)^2+(sinB)^2+2sinAsinB=(sinC)^2
(cosA)^2+(cosB)^2+2cosAcosB=(cosC)^2
(sinA)^2+(cosA)^2+(sinB)^2+(cosB)^2+2sinAsinB+2cosAcosB=(sinC)^2+(cosC)^2
1+1+2sinAsinB+2cosAcosB=1
sinAsinB+cosAcosB=-1/2
cos(A-B)=-1/2
(sinA)^2+(sinB)^2+2sinAsinB=(sinC)^2
(cosA)^2+(cosB)^2+2cosAcosB=(cosC)^2
(sinA)^2+(cosA)^2+(sinB)^2+(cosB)^2+2sinAsinB+2cosAcosB=(sinC)^2+(cosC)^2
1+1+2sinAsinB+2cosAcosB=1
sinAsinB+cosAcosB=-1/2
cos(A-B)=-1/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询