已知期望Ex怎么求E(x^2)

 我来答
当代教育科技知识库
高能答主

2019-06-20 · 擅长科技新能源相关技术,且研究历史文化。
当代教育科技知识库
采纳数:1828 获赞数:387367

向TA提问 私信TA
展开全部

VarX = E[X^2] - (EX)^2

E[X^2] = 18

E[(X-4)^2]=E[(X-EX)^2]=VarX=2

Var(2X-4)=2^2 VarX=8

扩展资料:

经济决策

假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元;

若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值

分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。

因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。

抽奖问题

假设某百货超市现有一批快到期的日用产品急需处理,超市老板设计了免费抽奖活动来处理掉了这些商品。纸箱中装有大小相同的20个球,10个10分,10个5分,从中摸出10个球,摸出的10个球的分数之和即为中奖分数,获奖如下:

一等奖 100分,冰柜一个,价值2500元;

二等奖 50分, 电视机一个,价值1000元;

三等奖 95分, 洗发液8瓶,价值178元;

四等奖 55分, 洗发液4瓶,价值88元;

五等奖 60分, 洗发液2瓶,价值44元;

六等奖 65分, 牙膏一盒, 价值8元;

七等奖 70分, 洗衣粉一袋,价值5元;

八等奖 85分, 香皂一块, 价值3元;

九等奖 90分, 牙刷一把, 价值2元;

十等奖 75分与80分为优惠奖,只収成本价22元,将获得洗发液一瓶;

参考资料来源:百度百科-数学期望



link2do
2017-02-22 · TA获得超过449个赞
知道答主
回答量:309
采纳率:0%
帮助的人:56.2万
展开全部
VarX = E[X^2] - (EX)^2
E[X^2] = 18

E[(X-4)^2]=E[(X-EX)^2]=VarX=2

Var(2X-4)=2^2 VarX=8
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式